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Anomalies and the Eve effect in the asexual Penna model
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The Penna model of evolutionary ageing is an influential model of mutation accumulation and selection,
where an individual’s genomic information is represented by a binary bit string. One key parameter of the
model is the death threshold, 7, the number of diseases any particular individual is able to endure. We show,
by combined computer simulations and analytical formulation, that certain anomalies emerge in the asexual
Penna model for 7> 1, which may lead to the so-called Eve effect. We characterize these anomalies and their
associated demographic distributions. We argue that this anomaly is similar in nature to the well known

first-passage problem.
DOI: 10.1103/PhysRevE.74.051915

I. INTRODUCTION

In 1995, Penna [1] proposed a binary bit-string computa-
tional model for the process of evolutionary ageing. The
model is deceptively simple to construct, and yet it captures
some key features of evolution, namely, mutation accumula-
tion and selection. Indeed, the basic Penna model provides a
useful foundation upon which other effects could be added
and studied [2]. As a result, the Penna model has acquired a
considerable popularity, and over 170 published citations of
the original 1995 article can be found at the time of this
writing.

The idea that the natural selection, and therefore the sur-
vival of the fittest, seemingly contradicts the detrimental be-
havior of ageing and the general decline of an organism’s
capability [3]. The resolution of this conflict lies in the oc-
currence of mutations. It is now generally accepted that age-
ing is regulated by specific genes, as originally proposed by
Medawar [4], and their effects depend on the reproductive
life cycle of the individual organism as well as random mu-
tations that occur [5]. The Penna model provides a means to
model this delicate interplay during the evolution of an age-
structured population under the influence of age-specific
harmful mutations [2].

The original Penna model is designed for computer simu-
lations, and therefore is discrete in nature. Time steps are
counted by an integer and an organism’s genome represented
by a binary bit string. Each 0 on the bit string represents a
healthy site, and each 1 a harmful one. The location of the
harmful sites on the bit-string, x, indicate the ages at which
the organism suffers the harmful effect (a disease). Having
suffered 7" diseases an organism gives up and dies. The bit
string is of course finite in length (usually 32 or 64 bits as
dictated by the available 32-bit and 64-bit computer proces-
sors) and each newborn inherits the parental string, with ex-
tra mutations introduced into its bit string. Normally, muta-
tions occur infrequently and multiple mutations are rare.
Mutations are also considered as always harmful (turns a O
into a 1), since harmful mutations vastly outnumber the help-
ful ones in nature [5]. This assumption may be relaxed to
allow a small rate of positive mutation which, provided it is
much smaller than the negative mutation rate, does not quali-
tatively alter the overall demography [6]. Therefore, we con-
fine our discussion here to the case of only single harmful
mutations at births.
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The large number of Penna simulations, published in the
wake of the original Penna model, were not always consis-
tent. For example, Malarz [7] investigated the effects of dif-
ferent bit string lengths on the Penna model. He inquired as
to whether large bit strings were required or whether one
could expect, after appropriate scaling of other parameters,
the same results for different genome lengths. Investigating
the effects of string length through simulations, Malarz was
unable to find universal agreement in the scaling of the
Penna model results. In other words, simulations with differ-
ent bit string lengths could produce different results, casting
doubts over the universal applicability of the Penna model.
However, later analytical works [8-10] proved conclusively
that universal scaling relations do exist for the Penna model.

In this paper, we show, by combined computer simula-
tions and analytical formulation, that certain anomalies
emerge in the asexual Penna model for 7> 1, which lead to
the so-called Eve effect [11-13]. We characterize these
anomalies and their associated demographic distributions.
We suggest that these anomalies may be responsible for
some inconsistencies in the earlier Penna simulations. Fur-
thermore, any future Penna simulations must pay special at-
tention to these effects.

II. ANOMALY IN THE PENNA MODEL

The asexual Penna model has been formulated and solved
[14,15]. The case of T=1 gives straightforward agreement
between computer simulation and analytical solution. For T
> 1, the analytical solution can be obtained through an an-
satz. We found agreement between this analytical solution
and computer simulations provided that either the simulation
size is very large or the simulation period is relatively short.
With moderate parameters however, computer simulation
can frequently lead to a host of distinct steady states. Those
are indicative of certain anomalies, which we will analyze
here. For the purpose of clarity, we will concentrate on the
case of T=2. For higher threshold values of 7, the anomalies
we discuss remain qualitatively the same.

For T=2 case, an individual may survive two diseases,
and therefore the location of the first two deleterious bits, /;
and [ (with [>1,), are of interest. The second bit at / marks
the death of the individual and thus [ is referred to as the
genetic lifespan. A population can be characterized in terms
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FIG. 1. Simulated population n(l;,l) versus the location of the
first deleterious bit /; and the genetic string length /.

of the population distribution function n(l;,[), defined as the
number of individuals with their first two deleterious bits
located at /; and /, subject to normalization.

Figure 1 presents a fairly typical scenario of n(l;,/) from
a computer simulation of a population after reaching steady
state. Simulation parameters are: mutation rate B=1/30;
birth rate is moderated via a Verhulst factor

N
b=b0<1—_),

max

where by=1, the maximum population N,,,, =107 and N is
the actual population determined at each simulation step; a
population reducing Verhulst factor is not introduced though
in principle possible; finally [,,,,=16 represents the maxi-
mum genetic lifespan of the population. These are quite typi-
cal simulations which take minutes to hours on a Pentium 4
computer.

A notable feature in Fig. 1 is the formation of a ridge at
[,=11. If we sum n(l;,[) over l;, we obtain the population as
a function of the genetic lifespan [,

n(l)= > n(l,,0), (1)

0

then the aforesaid ridge gives rise to a spike in the corre-
sponding n(l) plot, as presented in Fig. 2 (all simulation pa-
rameters for Fig. 2 are the same as for Fig. 1). The spike is
located at the position of the ridge, /,=11. This is in stark
contrast to the prediction of the ansatz which gives rise to a
smooth curve for n(l), shown to be valid for a very large
population [14]. Clearly, the Penna model contains a poten-
tial anomaly that merits investigation.

Further simulations inform us that the spike location I
appears to be developed randomly for repeated simulations
with the same set of initial conditions. Once the spike forms,
its location [/, becomes fixed. Furthermore, the population
n(l,,l) dies out completely for the case [, >1, and the case
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FIG. 2. Population n(l) versus the genetic string length /, from
simulation and analytical solution, showing excellent agreement.
Squares: simulation; crosses: analytical solution.

[y <l; and I>[,. Guided by these observations, we formulate
our analytical approach step by step for [>1[, I=1,, <[, as
follows.

For [>[,. Since population with /; >/, dies out, those or-
ganisms with /;=[; obey the following evolution equation:

lmaX
bme PV E n(l,1")
I'=l+1

dn(l,l) _
dr

n(l,1)
— 0+

be PUDn(1,,1) - z

(2)

where b and 3 are rates for birth and mutation, respectively;
m is the probability of mutation at a given site m=1-e75;
and /,,,, is the maximum / of the population. The first term
on the right-hand side results from mutation free births, the
second term from death, and the third term from mutated
births. This formulation is similar to the T=1 case of the
standard Penna model [14]. For steady state, the time deriva-
tive d/dt goes to zero, and our evolution equation can be
solved exactly by the recursion relation:

n(ll+1) 1+1 PV —pi

n(ly,1) I Pl —b(l+1)e?

3)

Thus, given the population n(l,1,,,,), we can determine all
n(ly,1) for [,<l<l,,,, The model is linear and scalable, so
the distribution function n can be normalized later.

For /=1,. The mutated births into /= can only come from
those n(l;,1) with [, <I<1,,,,, since only single negative mu-
tations are considered. And the evolution equation for popu-
lation n(l,,l,) reads:

dnll, 1) _ be Pl n(1,,1) - GUR
dt [
lmax
+bmePUTD D n(1,1). 4)

I'=lg+1

Again setting the time derivative to zero for steady state, we
obtain the solution
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lmax
bml;

AU _py > nll,l), (3)

SU=1g+1

n(llvl.v) =

where the sum is given by the solution n(l,,[) from the pre-
vious /> case. Note that the right-hand side does not con-
tain /;, thus our analysis predicts that n(l,,/,) is independent
of ;. In other words, the ridge in Fig. 1 should be level, a
prediction confirmed by simulations.

For [ <. Population n(l,,l) can be enhanced by mutated
births from either n(l;,1") or n(l,l") with I’>1, and so we
have

dn(lhl) _
dr

be‘ﬂ(l_l)n(ll,l) - @ + bme BV

]S
X 2 [n(l,0) +n(L1)]. (6)

I'=l+1

Noting that this equation, in fact, remains true for all /; <[,
we deduce that the solution n(l;,1) will be independent of /.
This deduction is confirmed by the simulation results shown
in Fig. 1, and therefore, Eq. (6) can be solved analytically
yielding the following recursion relation:

n(l,l+1) 1+1 eP=D _ pl ;
n(l,) 1 P —blI+1)2eP-1) ™
Combining the above three stages of analysis, we can
calculate the entire distribution of population, provided [ is
known. Since /; emerges randomly in simulations, it needs to
be passed to our analytical formulation in order to match the
particular set of simulation data. Finally, normalization can
be applied so that n(I;,[) represents the fractional population
so that it becomes independent of the simulated population
size. Our analytical results have been plotted in Fig. 2, to-
gether with the data from the simulation. The excellent
agreement validates the theoretical formulation and the
mechanisms it reveals of the population dynamics in the
Penna model.

III. DISCUSSION

The standard Penna simulations only consider a possible
single negative mutation at birth as the dominant mutation
mechanism. This in turn limits the interaction between dif-
ferent genotypes. For a steady-state to exist there must be a
longest lived subpopulation which is self-sustaining, i.e., not
reliant on mutated births. No other shorter-lived subpopula-
tion can be self-sustaining if the population is to remain
bounded, as shorter-lived organisms can always be created
by mutated copies of longer-lived ones. For the longest-lived
subpopulation to be self-sustaining, each organism must pro-
duce on average one perfect copy of itself during its lifetime.
All other populations, with [</,,,,, gain from mutated births
of the longest lived, so unmutated birth per individual must,
on average, be less than unity.

In simulations, birth rate is modified by the so-called Ver-
hulst factor, and when the steady state is reached the birth
rate would be such that the organism with /=/,,,, produces
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FIG. 3. The decline of the number of distinct genetic families
versus time, leading to the Eve effect. The two straight lines have
slopes —1 and —2.

on average one mutation-free copy of itself during its life-
time. For T=1, there is no ambiguity to the longest living
genotype n(l,,,.), but for T=2 however, it is possible for two
individuals to have different locations for their first deleteri-
ous bit while having the same /=/,,,, and the same lifespan.
Moreover, if [, #1{, a subpopulation n(l,,l,,,) cannot give
rise to n(l},1,,,) through a single negative mutation. There-
fore, the genotype (1;,1,,,,) Would evolve somewhat indepen-
dently from (/{,/,,o). In fact, the evolution equation (2) is
identical to the earlier ansatz solution for T=2 [14], only the
presence of [, provides alternative population configurations.

In the case of T=1, extinction due to the well known
Muller’s ratchet is alleviated by the Verhulst factor which
increase the birth rate when the total population drops. But
for T=2, all subpopulation n(l;,l,,,) for different I,’s fluc-
tuate due to the stochastic nature of the simulation, much like
a collection of diffusing particles under an overall constraint
due to the Verhulst factor. But the Verhulst factor only acts
through the total population, and each subpopulation can eas-
ily suffer from the ratchet effect as another subpopulation
can grow to make up the total population. When a subpopu-
lation n(l,,1,,,) ventures close to extinction, it receives little
help toward a recovery, and the closer it is to extinction the
more vulnerable it becomes. Therefore, given enough time,
the system would eventually settle into one of subpopula-
tions which gives rise to the spiked states observed in the
simulations. This is akin to the first-passage problem of mul-
tiple diffusive particles [16]. Figure 3 plots the number of
distinct genetic families versus time, showing a steady de-
cline, and leading to the Eve effect. This is in broad agree-
ment with previous results [12] reporting potential scaling
regimes of —1 and —2. However, it should be noted that the
scaling does not persist over a significant range as is the case
in Ref. [12], and the early time behavior is particularly sen-
sitive to initial conditions.

Figure 4 gives a histogram of time taken to reach a spiked
population configuration from 1600 repeated simulations un-
der the same initial conditions. The simulation parameters
are B=1/30, by=1, 1,,,=16, and squares with N,,,,=2.25
X 10%, crosses with N,,,,=4.5 X 10*. The resulting histogram
is very similar to the survival time distribution, the so-called
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FIG. 4. Histogram of normalized frequency vs time to complete
spike formation. Simulation parameters are B=1/30, by=1, [,
=16, and squares with N,,,,=2.25X 10*, crosses with N,,, =4.5
X 10%

Smirnov density, of the first-passage problem [16]. Larger
population gives rise to a larger survival time, in accordance
with the first-passage problem solution. Due to the presence
of the birth rate Verhulst factor, which in effect introduces
interaction between the diffusing particles, a direct compari-
son is not legitimate. In practice however, the Verhulst factor
varies relatively little after the early stage simulation steps
during which a steady total population is achieved. This ex-
plains why Fig. 4 closely resembles the first-passage survival
time distribution.

Figure 5 shows the occurence frequency of the different
locations of the spikes in 1600 repeated simulations. The
simulation parameters are the same as those of Fig. 4 with
N,,.:=4.5 % 10*. From the results, we can conclude that lo-
cation [, is indeed random, as our analysis would suggest.
The formation of the spiked population configurations
clearly reduces the diversity in lineage, as a large number of
subpopulations are in effect wiped out during the spike for-
mation. This provides a clear mechanism for the so-called
Eve effect [11,12], where population evolves to have fewer
and fewer common ancestors. Again the dynamics of this
mechanism would closely follow that of the first-passage
problem. Different power laws were observed for early and
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FIG. 5. Distribution of the spike location /; in 1600 repeated sets
of simulations.

late stage simulations of the Eve effect [11,12]. This differ-
ence, according to our analysis, could be linked to the varia-
tion within (and the lack of) the Verhulst factor at the early
and late stage simulations.

Finally, for cases where 7>2, we find qualitatively simi-
lar anomalies in simulations. The analytical formulation fol-
lows a similar line as presented here, with the population
n(ly,1) generalizing to n(l,,l,,1).

IV. CONCLUSION

To conclude, we have shown by means of exact analytic
solution and computer simulation that, in the asexual Penna
model, a series of anomalies exist which may have affected
all similar Penna simulations in the past. We have character-
ized these anomalies and their associated demographic dis-
tributions. Future simulations of the asexual Penna model
need to pay special attention to these anomalies if reliable
results are to be obtained. Our analysis also suggest that the
so-called Eve effect arises in the Penna model via a mecha-
nism similar to the first-passage problem. Similar effects in
the sexual Penna model is under our ongoing investigation.
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